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ABSTRACT

In the past decades, the use of massively parallel supercomputers and distributed systems
has increased, while the cost of computational resources has decreased steadily. This has lead
to the emergence of a new dominant cost—that of the human developer. The solution of large-
scale scientific problems has generated a need for development environments that ensure good
human efficiency in the development of an application, in addition to the application’s compu-
tational efficiency. We have developed an environment for rapid-prototyping of scientific codes,
combining the ease-of-use of a MATLAB-like interactive interface with the high performance
of a massively parallel system. This new approach to high-performance computing bridges the
gap between high-level interactive interfaces and parallel architectures. It further allows the
utilization of highly optimized parallel numerical libraries. Finally, the difficult and error-prone

management of distributed resources is handled in a manner transparent to the user.
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CHAPTER 1

Introduction

In recent years, application development support for uniprocessors has grown dramatically.
A myriad of tools is available to assist developers in a wide range of business and scientific
domains. In numerical computing, computational tools such as MATLAB! hide the implemen-
tation details of fundamental algorithms used repeatedly in scientific applications.

On massively parallel platforms or distributed environments, application development is
still difficult and time-consuming due to the scarcity of good supporting tools. Furthermore,
ensuring portability of scientific software among high-performance platforms is a cumbersome
task; many codes are rendered obsolete or in need of major updating not long after their
creation when their target platforms retire. With the increasing popularity of distributed
shared memory architectures and high-speed networked environments, distributed hardware
resources have outpaced available software tools, increasing the need for portable, extensible,

and easy-to-use distributed software.

1.1 Motivation

The objective of this research is to develop a framework for easy, efficient, and portable
numerical application development.

We address the following research issues in the area of parallel numerical computing:

'MATLAB is a registered trademark of The MathWorks, Inc.



1. High-performance computational resources are not easily or uniformly accessible.
2. Some numerical computations take a long time to run on a sequential machine.

3. Writing efficient numerical codes on parallel machines is difficult and time-consuming,.
Implementing good data-distribution, load-balancing, and code scheduling schemes is an

extremely complex task.

4. The resulting parallel code often has poor portability among high-performance architec-

tures or heterogeneous collections of resources.

5. In order to maximize hardware utilization, jobs on high-performance machines are usually
executed in batch mode. This leads to little or no run-time interaction between the user

and the application, slowing and complicating the development process.

1.2 Standard approaches

There are various ways to approach these problems. One possible approach is to design a
parallelizing compiler that exploits the fine-grain parallelism that can be found in sequential
code. This solution eliminates the difficulty associated with writing parallel code, but it does
not satisfy the interactivity requirement. It also has other limitations, such as questionable
scalability of parallelized codes and serialization imposed by sequential implementations of
algorithms. In numerical computations, an automatically parallelized sequential algorithm
may perform considerably worse than a parallel implementation of the same problem. We have
therefore chosen to focus on exploiting coarser-grain parallelism for the solutions of numerical
problems.

Another solution is to provide an interface that would allow numerical computations to
execute on a high-performance remote host and display the results on the local client. This
approach solves the first two problems, but it does not address the difficulty of writing parallel

code and managing run-time resources, especially in heterogeneous network environments.



Yet another approach is to create an interactive parallel numerical environment directly on
the high-performance parallel computer. This solution addresses some of the above problems,
but it does not ensure good resource utilization. During an interactive session, the programmer
is likely to be idle some of the time. Furthermore, not all of the user-specified computations
require the same amount of resources: during an interactive session, the user may need to
compute many small problems and only a few larger ones. Finally, simultaneous utilization of
heterogeneous environments is not directly supported by this approach.

Later we discuss some systems based on these and related approaches. Appendix A con-
tains a list of specific research projects representative of the approaches described in this section.
None of the existing solutions fully addresses the problems listed above in the context of nu-
merical computations. A more comprehensive solution can be achieved by devising a hybrid

approach, addressing all of the principal problems listed earlier.

1.3 Contributions of thesis

Main contributions to the field of parallel numerical computations made by this thesis

include:

1. Formulation of a framework for interactive parallel numerical computations. This frame-
work defines mechanisms through which high-performance computing resources can be

easily and uniformly accessible.

2. Utilization of optimized parallel numerical algorithms to obtain solutions to problems that
do not have feasible sequential solutions. The user can perform testing of new algorithms
using real data sets instead of toy problems. Algorithms that appear promising on small

data sets may not perform as expected on large problems.

3. Utilization of a very high level interactive environment for parallel application devel-
opment. The user interacts with a MATLAB-like interpreter, which enables the rapid

prototyping of algorithms and applications.



4. Utilization of resources in a manner transparent to the programmer. Multiple users share
the same parallel resources, ensuring good response times during users’ interaction with
the system. All resource management is handled transparently to the user. However,

users are given capabilities for controlling system parameters.

5. Implementation of a software system that is portable among high-performance archi-
tectures. In support of this thesis we developed DLab (Distributed Labatory), which

provides the functionality discussed above.

To summarize, the main contribution of this research is the development of a problem-solving
environment for numerical computations combining the ease-of-use of a high-level interactive
interface with the high-performance of a distributed system that intelligently uses all resources

on the network.

1.4 Organization

This dissertation is divided into seven chapters and two appendices. An overview of the
DLab environment is presented in Chapter 2. Chapter 3 describes our approach to resource
management. A discussion of the software organization of the DLab framework is contained
in Chapter 4, including a detailed description of the steps required for extending the current
functionality. Examples of using the DLab environment and performance results are studied
in Chapter 5. Chapter 6 offers ideas for future work. Finally, the conclusions are presented in

Chapter 7.



CHAPTER 2

Overview of the DLab Environment

In this chapter, we present an overview of the DLab run-time system. We focus on the run-
time aspects of the environment, not the static organization of the software. A comprehensive
discussion of the software design of the DLab framework is contained in Chapter 4.

The logical organization of the DLab environment is illustrated in Figure 2.1. The clear
boxes represent third-party libraries or components. The shaded boxes represent DLab com-
ponents.

The DLab framework provides mechanisms for utilizing distributed hardware and software
resources in a manner transparent for the application developer. Internally, we provide the
infrastructure of a client-server environment, allowing multiple clients to utilize the resources
of a parallel server. The user interacts with a MATLAB-like interpreter in virtually the same
way as in traditional sequential code development. This interpreted environment is extended
with distributed client functionality. The server component of DLab is referred to as the
computational engine. Typically, it executes on a high-performance parallel machine or a
network of workstations. The client interface and computational engine define the infrastructure
required for performing parallel numerical computations in a manner transparent to the user of
the environment. This infrastructure allows the utilization of high performance architectures,
such as the SGI Origin2000, and optimized parallel numerical libraries, such as ScaLAPACK.

The development of the DLab environment has proceeded through two phases. During

the initial phase, the research effort was focused on extending the sequential interpreter with



a client interface, which allows the establishment of a connection to a remote computational
server. The original server could handle only one client connection, executing requests in
sequence using mainly ScaLAPACK routines. In the second stage of development, the server
was extended to handle multiple clients and was subdivided into several components with
different responsibilities. The original unstructured code was rewritten and structured to make
the environment more portable and extensible. The following sections contain a high-level

description of the functionality of the client and computational engine components.

User Code

Y

Interpreter
Y
DLab
Client
Sequential DLab Remote
Numerical Computational
Libraries Engine
Y
DLab | DLab | DLab
Dispatcher "1 Server | 7| Scheduler

A

Y

Parallel DLab
Numerical Resource
Libraries Monitor

Figure 2.1: Logical organization of the DLab environment.



2.1 Third-party software

Unlike most existing object-oriented packages for numerical computing, the interactive in-
terface and computational back-end of DLab are designed to take advantage of third-party
libraries. In the present implementation, MATLAB is used as the interactive front-end, and
the parallel computational engine utilizes ScaLAPACK routines. MATLAB and ScaLAPACK
are not part of the abstract framework and are used solely to demonstrate its purpose and
functionality. In this section, we summarize the main features of these and related packages.

MATLAB [45] is an interactive technical computing environment. It provides core math-
ematics and advanced graphical tools for data analysis, visualization, and algorithm and ap-
plication development. In addition to built-in implementations of many numerical methods,
MATLAB can be augmented with a variety of toolboxes for specialized computations, such as
neural network simulation or digital signal processing.

Originally, the client was based on the high-level MATLAB-like software Rlab [60], which
was developed by Ian Searle as a freely available academic problem-solving environment. Rlab
provides most of the functionality of MATLAB, but has different internal implementation.
Instead of relying on custom-written numerical routines, Rlab utilizes third-party libraries,
such as the BLAS and FFTPACK. This allows users to achieve higher performance by using
optimized platform-specific implementations of those libraries.

During the initial stages of this research, the current version of MATLAB did not provide any
object-oriented features, and without the availability of its implementation, extending it with
a distributed client interface in a manner transparent to the user was not possible. Beginning
with version 5, MATLAB introduced an object-oriented model of programming that allows the
overloading of predefined classes and functions. This enabled us to incorporate a client interface
similar to the one implemented for Rlab, while maintaining the traditional syntax of MATLAB
operations. By overloading built-in data types and their associated functions, we are able to
perform all communications between the client and the server in a manner transparent from the

user. Most of the time, the user is unaware of whether a given variable is local or distributed.



The only significant DLab feature not available in MATLAB is the reclaim() function, which
was added to allow the user to request explicitly that data be transferred back to the client!.

We believe that extending MATLAB has some significant advantages over using Rlab as
the underlying environment. First, in order to start using DLab or add any new distributed
functionality, the whole interpreter must be recompiled. Existing installations of Rlab must
also be recompiled in order to support DLab extensions. By using MATLAB, DLab can be
used directly with existing MATLAB installations, and existing DLab components do not need
to be recompiled when new features are added. Second, Rlab’s interface has changed signifi-
cantly between versions, and porting the DLab extensions to the latest Rlab version has proven
cumbersome and time-consuming. This problem is less severe in the case of MATLAB since
later versions usually retain backward-compatibility. At worst, a few minor modifications may
be needed to the DLab components.

Currently, both Rlab and MATLAB interfaces to DLab are available. However, we are not
planning on extending the Rlab interface with new functionality, and cannot guarantee that
it will be ported to new releases of the software. The MATLAB interface, on the other hand,
is portable to future versions of MATLAB with little or no modification. Thus, we use the
MATLAB interface in all our examples and results.

ScaLAPACK [7, 58], version 1.2, includes routines for the solution of systems of linear
equations of various types, condition estimation, iterative refinement, LU and Cholesky factor-
ization, matrix inversion, full-rank linear least squares problems, orthogonal and generalized
orthogonal factorizations, orthogonal transformation routines, reductions to upper Hessenberg,
bidiagonal and tridiagonal form, reduction of a symmetric-definite generalized eigenproblem to
standard form, and symmetric, generalized symmetric, and non-symmetric eigenproblems.

Most of the ScaLAPACK routines are based on block-partitioned algorithms in order to
minimize the frequency of data movement between different levels of the memory hierarchy.

The fundamental building blocks of the ScaLAPACK library are distributed-memory versions

!The situations under which data transfer occurs are discussed in more detail in Section 2.3.1.



(PBLAS) of the Level 1, 2 and 3 BLAS, and a set of Basic Linear Algebra Communication
Subprograms (BLACS) for communication tasks that arise frequently in parallel linear algebra
computations. In the ScalLAPACK routines, all interprocessor communication occurs within the
PBLAS and the BLACS. One of the design goals of ScaLAPACK was to have the ScaLAPACK
routines resemble their LAPACK equivalents as much as possible.

The Basic Linear Algebra Communication Subprograms (BLACS) library provides a linear
algebra oriented message passing interface that can be implemented efficiently and uniformly
across a large range of distributed memory platforms. The BLACS is used as the communi-
cation layer of ScaLAPACK. The computational model consists of a one- or two-dimensional
process grid, onto which data and computations are mapped. The BLACS include routines for
sending, receiving, broadcasting or reducing matrices or submatrices amongh different subset of
processors. In addition to supporting common communication primitives, the BLACS provides
specialized high-level linear algebra routines that are not available in general-purpose message-
passing libraries such as MPI. The BLACS can be configured to use either the Parallel Virtual
Machine (PVM) interface or MPI. In our implementation of DLab, we utilize an installation
based on MPI.

The BLAS (Basic Linear Algebra Subprograms) [15] is a library of routines for common
linear algebra computations, such as dot-product, matrix-vector multiplication, and matrix-
matrix multiplication. PBLAS [7, 58] is a parallel implementation of BLAS routines using
message-passing based on the BLACS library.

The Message Passing Interface (MPI) is a library specification for message-passing, proposed
as a standard by a broadly based committee of vendors, implementors, and users [46, 62]. MPI
is designed for high-performance communications on both massively parallel architectures and
clusters of workstations. Since MPI is a standard interface, applications using it are portable

across platforms. Various implementations of MPI exist.



2.2 Run-time organization

Figure 2.2 illustrates the principal run-time components of the DLab environment. The
arrows represent communication links between components. Typically each client executes on
the user’s desktop workstation. The client establishes a connection to the remote computa-
tional server when the user starts the interactive session. The location and some configuration

parameters of the server are specified in a configuration file that is loaded at start-up.

Remote Computational Engine

: Resource Manager

Scheduler
Dispatcher — A Server 2
Y
Resource
M onitor

Client A

Client B

Client Z

Figure 2.2: Run-time organization of the DLab environment.

This type of client-server organization with support for resource management can be found
in environments for distributed computations, such as the Globus Toolkit [21, 22], which provide
basic mechanisms for communication, network information, and data access. These mechanisms
are then used to construct higher-level metacomputing services, such as schedulers. The main
goal of this type of environment is to enable applications to adapt to heterogeneous and dy-
namically changing metacomputing environments. In order to take advantage of the services
provided by Globus, an application use them explicitly in its implementation. Using this kind
of environment makes distributed applications more robust and portable, but it does not solve
the problem of having to write parallel code with complex interactions, and has no special
consideration for interaction.

In addition to employing low-level mechanisms similar to that of a metacomputing envi-

ronment, DLab removes the burden of parallel resource management from the user and au-

10



tomatically handles data distribution and third-party library utilization. OQur design exploits
detailed information about the computation performed, allowing good parallel performance to

be achieved without requiring feedback from the user.

2.3 The DLab client

The power of prototyping systems like Maple, MATLAB, Mathematica, RLab, and Octave
is expressed in their interactive nature. It is straightforward for both experienced programmers
and novices to develop algorithms and to visualize results. While these environments work well
for small problems, they are often inadequate for more realistic large data sets.

The DLab client addresses this problem by combining the ease-of-use of an interactive
environment with the power of a high-performance parallel computational back-end. The client
is the only component of the environment that interacts directly with the user (see Figure 2.3
for an interface example). From the user’s point of view, the interactive programming interface
does not differ from that of one of the corresponding sequential environments. We believe that
our client-server model is appropriate not only for algorithm development, but also for scientific
computation.

Our model differs from some existing client-server parallel systems in that not all compu-
tations are performed at the remote computational server. The client performs inexpensive
computations, and only operations involving large data sets are performed at the remote com-
putational engine. This approach leads to better local resource utilization and potentially better
performance since the penalty of data transfer is avoided when the operation complexity does

not warrant it.

> A = rand (1000, 2000);
> B = rand (2000, 1000);
> C = A % B;

> save(’C.dat’, ’C’);

Figure 2.3: DLab user interface example.

11



Computations that are deemed inexpensive based on problem size are performed locally
by interfacing with either the interpreted environment’s native implementations of algorithms
or third-party libraries, such as the BLAS, LAPACK, and FFTPACK. Based on a threshold
parameter, the client decides whether the computation is too expensive to perform locally and
if so, generates a request to the remote computational engine.

Communication between the client and the server is transparent to the user. In Rlab,
this transparency is achieved by modifying the environment’s implementation to intercept all
commands issued by the user and initiate communication with the computational engine when
appropriate. In MATLAB, we extend the existing functionality by overloading functions of the
default array type. When a vector or a matrix is created, a threshold parameter is used to

determine whether it should be distributed or not.

2.3.1 Lazy evaluation

Traditionally, parallel numerical applications are executed on high-performance platforms
using some batch queuing system. During the application development process, the edit-
compile-execute cycle can be excessively time-consuming using this mode of batch processing.
Using an interactive development environment avoids the tediousness of dealing with queuing
systems, but it also imposes tighter limits on the time during which the user has no control over
the system. If a user must wait for a result for more than a couple of minutes, the benefits of
interactivity are greatly reduced. Therefore, it is essential that in our interpreted environment,
we ensure that the user regains control as soon as possible after each operation.

To provide fast response times in DLab whenever possible, we employ a lazy evaluation
approach. This technique consists of returning control to the user as soon as a request has
been submitted to the computational server, usually before the result has been computed. The
response time achieved is equal to the time it takes to send a very short message to the server
and receive an acknowledgment. The scheduler determines when the result will be computed.

If the user requests the data explicitly, the computation will be scheduled as soon as possible.

12



The user can implicitly or explicitly request the result of a computation in one of the following

ways:

e The data corresponding to a distributed variable is written to a local file. For example,
the last line in the code segment in Figure 2.3 requires that the contents of the distributed

matrix C be transferred back to the client and written to the file C.dat.
e The user displays or visualizes all or part of the data.

e The user explicitly requests that the data be transferred back to the client. For this
purpose we introduce a “reclaim” command that is never evaluated in lazy mode, i.e., the

prompt does not return until the requested data is available locally.

When the user implicitly or explicitly reclaims distributed data, all requests whose results
are needed before the desired data is available are given higher priority and scheduled for
execution as soon as possible.

The success of the lazy evaluation technique depends on the fact that usually several opera-
tions are performed before the final result is needed. It is possible that a fairly long sequence of
commands may be issued without the need of data transfer between the server and the client.
In many cases, a sequence of computations involving large amounts of data may produce a
relatively small result, e.g., a vector or a matrix norm. It is clear that in such cases transferring

intermediate results to the client is unnecessary.

2.4 DLab computational engine

The DLab computational engine executes on a high-performance distributed-memory plat-
form, such as a massively parallel supercomputer or a cluster of workstations. The engine can
be viewed as a collection of four principal components: the dispatcher, the server, the scheduler,

and the resource monitor.

13



2.4.1 The dispatcher

Existing interactive environments with support for parallel computations, such as MITMat-
lab [32] and Matpar [48], require that either the client and parallel server reside on the same
machine, or that an individual copy of the parallel server is started for each client. In either
case, there is no centralized view of all client connections to the same parallel platform. While
this simplifies the development of the server, it reduces its ability to monitor and intelligently
utilize shared system resources.

In DLab, multiple client connections are accepted at a predefined port by a daemon dis-
patcher process, which is responsible for multiplexing all requests arriving into the computa-
tional engine. When a new client connects, the dispatcher assigns a unique ID to it and notifies
the scheduler. The ID is also sent back to the client, and all subsequent requests contain it.
When a client disconnects, its ID is available for reuse. As each request arrives at one of
the connections, the dispatcher creates the appropriate request object and transmits it to the
scheduler.

The communication protocol used for the client-server connection is not hard-coded in DLab.
Currently TCP/IP sockets are used, but a different protocol can be substituted if appropriate
in a given configuration. Since the client and computational engine are normally a part of a

wide-area network, TCP/IP is usually a good choice for both speed and reliability.

2.4.2 The servers

We use the term server to designate the functional unit associated with completing a user
request. Each server executes on one or more physical processes and performs a specific func-
tion associated with a given user request, e.g., matrix multiplication. Servers are created and
initialized by the scheduler. Each server executes on a set of processors assigned to it by the
scheduler and has an associated context, which defines the logical work space for the current
operation. The context prevents different servers sharing the same resources from interfering

with each other. A physical process may be utilized by more than one server at any given time.

14



Once a server has been created, the result is computed by invoking an appropriate library
routine. In the current implementation, the ScaLAPACK portable numerical library is used,
but other libraries or individual routines can be added to the environment (a detailed discussion

of DLab’s extensibility is contained in Chapter 4.)

2.4.3 The scheduler

The scheduler, also referred to as the resource manager, executes as a dedicated processes
and is responsible for resource allocation and scheduling of requests submitted by all clients.
The scheduler is the central component of the computational engine; it provides focal point
for communication between the rest of the DLab components. Thus, we include a separate

discussion of the resource management components of DLab in Chapter 3.

2.4.4 The resource monitor

The resource monitor is responsible for collecting system run-time information, such as CPU
load and network bandwidth. The measurements obtained by the resource monitor are used
by the scheduler in determining the order of execution of user requests. Depending on the
hardware platform and operating system support, the resource monitor can be executed as a
separate process, or it may run on all processors in the computational engine. On a shared-
memory architecture, such as the SGI Origin2000, it is more efficient to have a designated
process for system monitoring. On a loosely coupled system, such as a cluster of workstations,
the collection of system status data must be performed on each physical processor. In the
first case, one process fsrom the pool of processes available to the computational engine is not
available for user computations. In the latter case, the sampling frequency and duration must

be controlled more strictly since it consumes time that could be used for executing user requests.

15



91

Client

Dispatcher

>C=A*B;

User regains control

(lazy evaluation}

\ MULT request

>

|
/ Ack. |
|
|
|
|

Result sent when
client requestsit

-

Scheduler Server

MULT request

Enqueue request

| Interaction with
| Resource Monitor,

| Scheduling
I
Y
Activate request
|
I
Check data distribution;
! alignment, perform
! memory allocation.
; Call ScaL APACK’s
! PvGEMM driver.
|
|
|
I
|
Y

Figure 2.4: Handling a matrix multiplication request.




2.5 Handling user requests

Figure 2.4 illustrates the main steps involved in handling a typical user request. The user
enters a statement at the prompt. If a function call in the statement contains at least one
distributed operand, the client sends a request to the computational engine, which includes
the client ID, the request type, and any additional data required for this operation. Supposing
that both matrices A and B are in the example of Figure 2.4 already distributed, only their
unique ID’s are sent with the request. After receiving the request, the dispatcher sends back
an acknowledgment or an error message if the request is incomplete. Once the client receives
the acknowledgment, control is returned to the user. The dispatcher formats the user request
and forwards it to the scheduler where it is enqueued and activated according to the current
scheduling strategy. Activating the request involves the creation of a server object, which

performs all necessary data processing before the computation can proceed.

2.6 Heterogeneity issues

In most cases, DLab system components execute on different hardware platforms. The
client normally runs on a single-user workstation, while the computational engine executes on
a massively parallel architecture or a network of workstations. Heterogeneity may be present
between the client and the server, and also within the computational engine.

Different types of heterogeneity must be handled separately. When the computational
engine includes machines of different speeds, special care must be taken in assigning work to
processors. When the data representation among machines is different, communication speed
can vary between heterogeneous machines on the same network. This disparity in computation
and communication speeds is handled by the scheduler using the information collected by the
resource monitor. Within the computational engine, the consistency of data transferred between
systems using different data formats is handled at the level of the communication library, e.g.,

MPI.
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When the client and the server use different binary representations, data must be converted
to the appropriate form at one of the communication endpoints. The required type of conversion
is architecture-specific and must be implemented separately for all pairs of platforms. When a
connection between the client and computational server is first initiated, a handshake signal is
used to establish which type of conversion to perform. Typically, the conversion is performed

at the server side since it can be done in parallel on faster processors.
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CHAPTER 3

Resource Management

In this chapter, we introduce the topic of resource management and discuss the scheduling
mechanisms used in the DLab environment. Scheduling is a vast topic, and we present only
portions of the literature relevant to this thesis.

Resource allocation or scheduling is the process of mapping units of work to computational
resources. In DLab, a typical unit of work to be scheduled is a high-level matrix operation, for
example, Cholesky factorization. Several types of scheduling can be discerned based on different
parameters. Based on the time at which a schedule is constructed, two types of scheduling can
be identified: compile-time (static) and run-time (dynamic) scheduling. Since DLab is an inter-
preted environment, and the same parallel resources are shared by multiple users, compile-time
scheduling would not be feasible or effective; thus, we focus on run-time scheduling techniques.
One of the main advantages of run-time scheduling is that resource allocation and task or-
dering can be adjusted according to changes in resource usage and availability. The penalty
for run-time scheduling is the overhead incurred by keeping track of system state and making
scheduling decisions at run-time.

Scheduling can be viewed as consisting of two phases: partitioning and mapping of resources.
Each of these stages may require multiple steps. Partitioning defines the the work units to
be scheduled, and mapping assigns these work units to processors. It must be noted that
scheduling is one of the most overloaded terms in the literature. In the area of operating

systems, CPU scheduling of processes is the most common meaning. In distributed systems
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research, scheduling usually signifies only the mapping of tasks to processors. In the context of

this thesis, we use mainly the latter.

3.1 Existing approaches to run-time scheduling

Run-time scheduling in parallel and distributed environments has been an active area of cur-
rent research. In this section, we discuss several popular approaches, followed by a description
of the approach taken in DLab.

One approach to scheduling, known as self-scheduling, is to try to have all the processors
finish a certain computation at the same time [24, 51, 64]. This type of scheduling attempts to
respond to load imbalance due to dynamic changes in the application and the system. This is a
fine-grained approach, working on the level of instruction scheduling, such as loop scheduling.

A number of software packages support automatic scheduling of applications in distributed
environments [13, 41, 50]. Most of these utilities are targeted at batch job scheduling of sequen-
tial applications on workstation networks with the goal of optimal resource utilization. They
represent a coarse-grained approach to scheduling, aiming at achieving high throughput for the
network as a whole rather than high performance of individual applications.

Another system that provides run-time resource allocation and scheduling support for paral-
lel applications is Prophet [68, 69]. The Prophet system determines what resources to allocate
to a given parallel data-parallel application based on its resource requirements. Information
about the application is provided by application call-backs, which are functions that provide
information about the communication and computation structure of the application. The ap-
plication developer is also responsible for providing architecture-specific information about the
basic units of computation present in the application. The architecture-specific information is
static, reflecting peak performance rather than the run-time state of the system. Furthermore,
the fixed architecture cost specification may not be valid for all possible problem sizes. In

order to use the Prophet run-time scheduling mechanism, the application must provide imple-
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mentations for the call-back functions, which require the programmer to run benchmarks in a
dedicated environment.

Mentat [27] and Charm [61] implement a load sharing scheduling technique in which a sub-
set of machines is probed to determine the machine with the lightest load. The application is
subdivided into tasks, and each task is scheduled individually. It is the responsibility of the ap-
plication programmer to partition the computation into tasks. Both Mentat and Charm require
that the applications be written in a custom language. Converse [36] is another environment
in which parallel tasks are scheduled automatically. Converse provides various load-balancing
strategies, dynamically scheduling tasks of applications that may be written in multiple lan-
guages. Again, the application programmer is responsible for partitioning the computation into
tasks.

After considering existing approaches to run-time scheduling, we found that none of them
were fully applicable in the DLab environment. Some approaches require feedback from the
user, whereas DLab must handle resource allocation automatically. Others are automated but
operate on fine-grain operations, e.g., individual loops or instructions. DLab schedules the
execution of high-level algorithms, such as LU factorization. Batch-queuing scheduling systems
put higher priority on throughput rather than response time, whereas the DLab scheduling

mechanism focuses on response time as the main measure of performance.

3.1.1 Data partitioning and processor selection

A number of researchers have studied the problem of partitioning the data and selecting
the optimal number of processors that can be used effectively [29, 49]. Some approaches use a
cost-based technique to determine the number of processors in a shared-memory environment
[29]. Selecting the number of processors is the main factor in determining the granularity of
the application, and to a lesser degree, the problem mapping.

A multi-user, multi-processor computing environment requires a resource allocation mecha-

nism that aims at achieving good system utilization combined with fast response times. These
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conflicting requirements are difficult to balance, and various approaches have been taken to-
ward achieving effective solutions. Keller and Reinefeld [37] split the resource manager into two
components: a Queue Manager, which is responsible for scheduling user requests independently
of the hardware environment, and a Machine Manager, which verifies whether a schedule given
by the Queue Manager can be mapped onto the machine. If the schedule cannot be mapped
onto the machine, the Machine Manager returns an alternative schedule to the Queue Manager.
This is a heuristic whose success depends on the Queue Manager’s ability to provide a good
schedule that can be supported by the hardware environment. Because of the separation into
logical and physical components, the current state of the hardware is not reflected in the sched-
ule produced by the Queue Manager, which may lead to a less effective solution. In the DLab
resource management component, we take an approach that schedules resources utilizing both
hardware-independent algorithm information about the computation and parameters reflecting

the current state of the system.

3.2 DLab’s approach to resource management

DLab defines a framework for resource monitoring, resource allocation, and problem map-
ping. The structure of DLab allows different resource management mechanisms to be imple-
mented with minimum effort. To our knowledge, DLab is unique in that it simultaneously ad-
dresses the problems of automatic processor selection, partitioning, and mapping of distributed

memory message-passing computations.

3.2.1 Resource requirements estimation

The DLab system must automatically handle various aspects of distributed computing: data
movement and distribution, resource allocation, scheduling of user requests, and invocation
of appropriate algorithms. Existing approaches require that the application writer explicitly
control some aspect of the parallel computation. For example, in MITMatlab [32], the user must

explicitly specify the data distribution, and the choices are rather limited — only one dimensional
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row- or column-oriented distribution is allowed. The decision of which data to distribute also
weighs on the user. DLab does not impose such restrictions on the access to parallel resources.
Some compiler-based approaches attempt to deduce the best resource allocation for a given
computation by analyzing the control and data flow of the algorithms involved. Clearly, this
approach is not viable in an interpreted environment, such as DLab, since there are no large
code segments available for analysis.

To allocate resources among multiple users’ requests, it is essential that we have some
information on the resource requirements of each request. The main idea is to obtain an
estimate of the run-time a certain request will take before that request has begun executing.
One way to obtain this type of information is to maintain a history of execution times for similar
requests, based on which a prediction can be made. However, when the DLab computational
engine first starts executing on a particular architecture using a certain amount of resources,
there is little information on the actual performance achieved while executing user requests.
Furthermore, this history would not necessarily be useful for predicting the execution time of
different problem sizes, and does not reflect the current state of the hardware resources. The
current strategy for scheduling user requests represents a solution to the problem that produces
a prediction taking into account the problem type, size, and the current state of the distributed

environment.

3.2.2 Estimating performance using algorithmic knowledge

Analytical knowledge about the performance of an algorithm can help determine near-
optimal parameters for the system resources needed for the solution of a problem. For example,
while an eigenvalue problem performs better with large block sizes on a relatively square virtual
processor grid, matrix multiplication performs better with small block sizes on a square virtual
processor grid, and numerical integration using the trapezoidal rule performs well on a row-

shaped virtual processor layout.
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DLab allows problem-specific information to be utilized in order to ensure better efficiency
and resource utilization. Third-party libraries accessed by DLab are encapsulated in an abstract
interface that incorporates information about some of the characteristics of the underlying
algorithms. Details of the implementation of this interface are discussed in Chapter 4.

In this section we describe in more detail the method by which we take advantage of algo-
rithmic knowledge in estimating performance of ScalLAPACK routines. The creators of ScalLA-
PACK [7] list several rules of thumb that may help achieving good performance. In general,
these suggestions deal with selecting an appropriate number of processors and distributing data.

We have added a few more rules that have been utilized in DLab.
e Selecting the right number of processors:

— Use number of processors P = M x N/1000000 for an M x N matrix.

— Do not try to solve a small problem on too many processors.

— Avoid using too few processors for a large problem. If the problem exceeds the
physical memory per node, thrashing may result for some algorithms.

e Use an efficient data distribution:

— Use a block size! of 64.
— Use a square (or as near as possible) processor grid.

e Use machine-specific optimized BLAS implementations and the BLACS in non-debugging

mode.

The usefulness of these rules of thumb is limited by the particular architecture’s processor
speed, memory per node, and network organization. They are mainly used as default values

for algorithms for which a more precise performance model is not available.

1 A block size of 64 suffices on most one-processor nodes. Nodes that have multiple shared-memory processors
may require a larger block size.

24



3.2.2.1 Performance model of ScaLAPACK drivers

In addition to general recommendations based on experience, the authors of ScaLAPACK
provide analytical performance estimates for some of the principal routines in the library [7].
We believe that in an environment such as DLab, augmenting computational routines with
analytical performance information is essential. Thus, we require that whenever possible, per-
formance estimates are included with the incorporation of new algorithms into the environment.
The process of providing this information has been defined in a straightforward fashion, as will
become evident from our discussion of the ScaLAPACK routines.

Before we present the performance model for ScalLAPACK algorithms, we need to introduce

some terms and notation. Table 3.1 contains a summary of the notation used in this chapter.

Variable | Description |

N Matrix size

P Number of processors

BS Data distribution block size

tr Time per floating point operation (flop)
ty Time per data item communicated

tm Latency for a single message

T() Estimated parallel execution time

Tseq() Estimated serial execution time

E() Estimated efficiency

CyN 3 Total number of floating point operations
C,N?/y/P | Total number of data items communicated
CmN/BS | Total number of messages

Table 3.1: Notation used in ScaLAPACK performance modeling.

When estimating the performance of an algorithm’s implementation, we are mainly inter-

ested in two metrics: ezecution time and parallel efficiency. The parallel execution time T'(N, P)

is defined as the time it takes to complete a computation for problem size N on P processors>.

*We use the term processors to refer to the tasks being executed in parallel, even though multiple tasks
may execute on the same processor. We use the term node to refer to a single processor or a shared-memory
symmetric multiprocessor.
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Parallel efficiency, E(N, P), for a problem of size N on P processors is defined by

Tseq(N)
E(N,P) = TN )"

For simplicity, we describe the performance model of ScaLAPACK algorithms with square
N x N matrix arguments. For dense matrix computations, an implementation is said to be
scalable if the parallel efficiency is an increasing function of N2?/P, the problem size per pro-
cessor. The algorithms implemented in ScaLAPACK are scalable according to this criterion.
There are stricter definitions of scalability, but the performance estimation method we use does
not require that we know the exact scalability of an algorithm.

Using the notation presented in Table 3.1, the execution time of the ScaLAPACK driver

routines can be approximated by

CyN?3 N C,N? Cm N

T(N,P,BS) = ~Io—t; 7Bt gt

Tseq(N, P) = C;N3t;. (3.1)

The corresponding parallel efficiency can be approximated by

1 Gty P Cyty \/1_3> ! 5.2

E(NP,BS)= |14+ —————
( B S) <+BSCfth2+Cfth

The authors of ScaLAPACK provide the values of the C'y, (', algorithm-dependent constants,
and C, for each class of driver routines. Equation 3.2 illustrates the effect of the ratio of the
communication latency to time per floating point operation (¢,,/t) on performance. Machines
for which this ratio is large are likely to perform poorly for small problems. On the other hand,
the per-processor flop rate (1/t¢) is the dominant factor influencing parallel efficiency for large
problems.

Equations 3.1 and 3.2 estimate the execution time and efficiency as a function of the problem

size and number of processors. The authors of ScaLAPACK treat the block size BS as a
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constant, but we take it into consideration when estimating the performance of ScaLAPACK

algorithms.

3.2.3 Employing optimization techniques for optimal resource allocation

Given the problem size, block size, and number of processors, we can use Equation 3.1 to
estimate the parallel execution time of any given ScaLAPACK driver routine. However, when
a user request arrives at the DLab computational engine, we do not know off-hand how many
processors would be optimal for this problem, or what block size would maximize the efficiency.
One solution would be to use the rules of thumb listed in the beginning of Section 3.2.2 to decide
on some distribution, and hope that reasonable performance is achieved most of the time. As
we noted before, however, these general guidelines do not provide for hardware differences in
parallel architectures.

The method introduced in the DLab environment estimates the number of processors and
block size so that execution time is minimized while maintaining satisfactory parallel efficiency.
For a given problem size N, we compute the values of P and BS that minimize T (N, P, BS).

The task of minimizing T'(N, P, BS) represents a problem in constrained non-linear op-
timization. We chose to use a direct search algorithm that does not require the derivative
of the objective function. We employ a linear approximation method proposed by M. J. D.
Powell [52] and implemented in the COBYLA package (Constrained Optimization BY Linear
Approximations.) A different optimization approach can easily be substituted, if desired.

Powell’s method minimizes an objective function f(z) subject to m inequality constraints
on z, where z is a vector of n variables. The algorithm computes linear approximations to the
objective and constraint functions. These approximations are formed by linear interpolation at
n + 1 points in the space of the variables. The points are regarded as vertices of a simplex. A
parameter p is used to control the size of the simplex, and is reduced automatically from ppegin
t0 Peng (the range is an input argument to the optimization routine). For each p, the algorithm

tries to achieve a good vector of variables for the current simplex size, and then p is reduced
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until pg,q is reached. The COBYLA package requires that the user provide an initial vector of
variables in z. We use the rules of thumb offered by the ScaLAPACK authors for specifying
these initial values. A change to z is considered an improvement if it reduces the merit function
f(z) + 0 max(0.0,—Ci(z),—Ca(x),...,—Cn(z)), where Cy,Cy,...,Cp denote the constraint
functions that should become nonnegative eventually, at least to the precision of pe,q, and o
is a penalty parameter. The user must also specify a limit to the number of calls made to the
objective function. The objective function and constraint functions are combined in a single
subroutine, which accepts as input the vector z and produces f(z) and C1,Cs,...,Cy,. The
user is responsible for providing an implementation of this subroutine, which is in turn called by
COBYLA. To summarize, the objective is to minimize f(z) subject to the constraint functions
being nonnegative.

The minimization of the function in Equation 3.1 is subject to the following inequality

constraints:

e The number of processors P is greater than zero and less than or equal to the maximum

number of available processors.
e The block size BS is greater than zero and less than or equal to the matrix size N.
e The parallel efficiency is at least 50%.

The last constraint is important, even though the 50% requirement is not fixed, and the actual
minimum efficiency level can be specified dynamically. We chose 50% as a reasonable lower
limit that would allow good parallel resource utilization while achieving good response times.
If the efficiency constraint is removed, slightly faster execution times may be achieved with a
greater number of processors, at the cost of potentially wasting parallel resources.

Until now we have discussed the performance model of direct methods. Iterative methods
lend themselves to similar analysis, with an added parameter specifying the expected number

of iterations. In determining the optimal number of processors, the complexity of a single
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iteration is taken into account. When predicting the total execution time, the expected number

of iterations is considered.

3.2.4 Estimating the execution time of user requests

Using the analytical performance model, we can compute an estimate for the execution
time of user requests. This estimate can be utilized by the scheduler in determining the order
of execution of user requests. The %y, ?,, and %, system-dependent parameters allow us to
incorporate information on the current state of hardware resource in the execution time estimate

for a given algorithm.

3.2.5 Resource monitoring

In addition to the performance estimate for a given algorithm, the DLab scheduler needs
information on the current state of the hardware in order to produce a more effective schedule
of user requests. The resource monitor component is responsible for collecting run-time infor-
mation and making it available to the scheduler. We have defined a framework which makes
it easy to extend the resource monitor in order to collect different types of run-time system
information. In the present implementation, we focus mainly on CPU load and communication
bandwidth.

The distributed resources on which the DLab computational engine is running is viewed as
a collection of roughly homogeneous clusters of processors. A processor cluster has a private
interconnection structure, and all processors have similar computational power and memory.
For example, the processors in an SGI Origin 2000 would be represented by one cluster, which
may be connected to another cluster consisting of Intel processors. Both computational and
communication resources may be heterogeneous between clusters.

There is a resource monitor for each computational cluster. The monitor collects and stores
information about the current state of the cluster, which includes the number of processors,

the load of each processor, the average load of the cluster, and the network bandwidth within
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the cluster. This information is utilized by the scheduler in order to determine the best set of

processors on which to execute a given user request.

3.2.6 Scheduling

The main goal of the DLab scheduler is to achieve reduced completion time for user requests.
ATl user requests to the DLab parallel environment are forwarded to the scheduler process. The
scheduler acts as a gate-keeper for the parallel system, assigning resources to each request, as
well as determining the time at which its execution is launched. The clients do not communi-
cate directly with the scheduler; instead, each server forwards user requests to it using a fast
communication protocol selected based on the current architecture.

We must emphasize that even though we define a particular scheduling strategy, the DLab
environment is in no way limited to that particular approach. As the discussion of the software
design of the scheduling component in Chapter 4 illustrates, adding new scheduling strategies
can be done without making any modifications to the rest of the system. It is also possible
to switch between scheduling strategies at run-time, enabling the dynamic adjustment of the
environment to changing resources.

There are various factors that the scheduler takes into account before allocating resources
to user requests. Some of the information utilized by the scheduler is provided by the resource

monitor. Additionally, the following considerations are taken into account:

e Before assigning a particular processor cluster to an operation, the scheduler checks for

data dependencies between previously scheduled or waiting requests.

e If an operation uses the results of a previous user request, the partitioning and mapping
of the result are considered before partitioning and mapping other operands of the current

operation.

e The client may give certain requests higher priority; those requests will be scheduled for

execution as soon as possible.
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When the DLab computational engine is running on multiple clusters, the decision of which
cluster to use is based on the optimal number of processors for a given request and the esti-
mated execution time of that request. The scheduler computes an ordering of execution times
computing using the individual cluster characteristics, and selects the cluster with the best

time.

3.2.7 Overhead control

It is crucial that the overhead of scheduling resources is as small as possible. We limit
the cost of the optimization process by relaxing the error tolerance, and also by controlling the
number of times the cost function is evaluated. Furthermore, a history of the scheduling cost for
each request is kept, and if the cost of the optimization procedure exceeds a certain threshold,
the default resource allocation options are used instead (see Section 3.2.2). This threshold is
proportional to the ratio between the cost of the optimization and the predicted execution time

for the problem.

3.3 Summary of assumptions about third party libraries

In designing the scheduling strategy described above, we made several assumptions about
the third-party libraries that can be utilized in the DLab computational engine. These are
not absolute requirements — libraries that do not follow these assumptions can be incorporated
into the environment, but at the cost of greatly reducing the effectiveness of the scheduler in
scheduling user requests effectively.

In order to ensure that enough information is available to the scheduler, the following
assumptions are made about the third-party libraries that are or can be incorporated into the

DLab framework.

e The library authors include an estimate of the complexity of all top-level algorithms im-

plemented in the library. This estimate can be part of the library, or, as is the case
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with ScaLAPACK, the analysis can be found in the user manual and other publications.
The information can be incorporated into the DLab environment by providing appropri-
ate wrappers for the library routines. The process of adding functionality to the DLab

framework is discussed in Chapter 4.

e The library has the capability of enclosing individual distributed operations in a con-
text. This is necessary in order to ensure that individual user requests do not conflict
during execution in a shared distributed environment. For example, the BLACS library
used in ScaLAPACK allows each operation to be enclosed in its own context. Similarly,
PETSc utilizes MPI communicators to ensure that several parallel computations can pro-
ceed simultaneously on the same set of processors without interfering with one another.

Contexts are essential in a multiple-user, shared-resource environment.

Most available parallel numerical libraries fulfill these requirements. In particular, any toolkit
that utilizes MPI as the underlying communication protocol allows the use of contexts. Ana-
lytical complexity estimates are not normally present as part of the software, but usually can
be obtained from other sources. We must note that it is not absolutely necessary to provide

such estimates, but their presence makes the scheduling of user requests much more effective.
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CHAPTER 4

Software Design

Software design issues are rarely discussed in depth when speaking of parallel numerical
applications. Speed and parallel efficiency are usually the topics that receive most attention
in the literature. Many parallel numerical codes today are implemented as loose collections of
Fortran or C routines. The performance benefit of taking this approach incurs a large penalty
in ease-of-use, portability, extensibility, and interoperability with other software. For example,
ScalLAPACK is a parallel numerical library that is organized in a somewhat structured fashion
and takes special care to ensure portability, but using the library is inherently difficult, and
interoperability with other packages is not supported.

Recently, efforts have been made to develop a methodology for designing numerical soft-
ware that exhibits high performance without sacrificing ease-of-use, portability, extensibility,
and interoperability. A research project representative of this effort is POOMA, Parallel Object-
Oriented Methods and Applications [14]. The POOMA framework provides high-level abstrac-
tions for multi-dimensional arrays, computational meshes, physical field quantities and collec-
tions of particles. POOMA is intended as an infrastructure for large-scale application design,
but does not define mechanisms for interactive algorithm development.

Another project focusing on designing an abstract framework for numerical computations
is PLAPAK [2]. The approach taken in this project makes parallel application development

easier by providing high-level abstract interfaces to numerical algorithms, but it does not hide
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the complexity of developing a distributed application. Furthermore, no support for interactive
development is available.

Existing frameworks are a step up from unstructured libraries, but they do not address all of
the issues in interactive distributed application development. One of the main contributions of
this thesis is the formulation of a framework for interactive parallel numerical computation. The
framework defines the general organization of components required for a system that supports
interactive application development while utilizing high-performance distributed resources.

There is no clear consensus on a single definition of a framework. We chose a definition
offered by Ralph Johnson, which states: “A framework is a reusable design expressed as a set of
abstract classes and the way their instances collaborate.” [35, 54]. A framework is not a complete
application: it defines the generic structure and behavior of a family of applications. This is
accomplished by defining abstract components and their responsibilities and collaborations,
leaving the concrete implementations open-ended.

The following features are essential in successful frameworks, and we have attempted to
address all of them in our design. We refer to application programmers as clients'. Clients
are programmers who modify or extend the framework’s functionality. Programmers who use,
but do not modify the applications build on top of the framework are referred to as users. In
describing the DLab framework, we present the perspective of both framework developers and

framework clients. In general, frameworks are identified by the following characteristics.

o (Completeness. Frameworks should support features needed by clients and provide default
implementations and built-in functionality whenever possible. In the case of DLab, the
framework contains at least one concrete implementation of each feature, as well as default
values for all configurable parameters. When the functionality must be extended, the

programmer can focus on individual features, e.g., wide-area communication protocols.

"When discussing the communication layer of DLab, we also refer to clients in the distributed computing
sense. The intended meaning of the term is usually clear from the context.
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e Flexibility. The abstractions defining the framework must be usable in different contexts.
For example, the communication layer of the DLab framework provides a uniform in-
terface for different types of distributed computation, e.g, client-server and symmetric

multiprocessor.

e FExtensibility. Functionality can be added or modified easily. It is a widely accepted fact
that frameworks evolve over time. The evolution of a framework must be facilitated by its
design. The framework should contain hooks (also known as hot spots) that allow clients

to customize the behavior by extending existing classes.

e (larity. Frameworks should be concise and well-documented. The abstractions should be
clear and easy to understand. Examples of how each feature can be extended should be

provided.

While clear differences exist between libraries and frameworks, some libraries can exhibit
framework-like behavior, and some frameworks can be used as libraries. Rather than making
a sharp distinction, one can view this as a continuum, with traditional libraries at one end
and complex frameworks at the other. Figure 4.1 summarizes the main differences between

traditional libraries and frameworks.

Library Framework

O 00O <

0O0O0O0 @ I

O O 0O

[ | o

« Client calls functions e Cdllsclient functions
* No predefined flow of control e Controls flow of execution
* No predefined interaction * Defines object interaction
* No default behavior * Provides default behavior

Figure 4.1: Comparison between libraries and frameworks.

Our approach is a combination of high-level abstract interface design and third-party compo-
nent utilization. In essence, we define the rules and mechanisms that allow traditional libraries

to be incorporated into the environment without changing the high-level view of the software.
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Our design represents a novel combination of solutions in defining a high-performance, portable,

and extensible environment.

4.1 Design patterns

In developing the DLab framework, we explored different existing solutions to the various
design problems that presented themselves. By defining the problems in an abstract way, we
were able to identify design patterns that offer a well-tested solution to a class of problems.
Design patterns identify, name, and abstract common themes in object-oriented development.
Various definitions of design patterns exist in the software community. A popular definition is
that a design pattern is a description of a well-tested solution to a recurring problem within the
field of software design. The main idea behind design patterns is to distribute the knowledge
of a good design so that software application developers can benefit from previous work in a
similar domain. Design patterns constitute a base of experience for building reusable software,
and can act as building blocks from which more complex designs can be built.

Architect Christopher Alexander first introduced the concept of patterns as a tool to encode
the knowledge of the design and construction of communities and buildings [1]. Alexander’s
model describes recurring elements for how and when to identify the patterns. Designers of
object-oriented software have begun to embrace this concept and use it as a language for
planning, discussing, and documenting designs.

In object-oriented software development, the designer performs object decomposition to get
from a high-level design to an object-oriented implementation. Similarly, one can decompose
a framework into recurring patterns. Some patterns are generic, and some are specific to a

problem domain. A pattern has four essential elements [25]:

e The pattern name is a handle used to describe a design problem, its solutions, and conse-

quences in a word or two.
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e The problem describes how to apply the pattern. It explains the problem and its context
in which the pattern is applicable. Sometimes the problem includes a list of conditions

that must be met before the pattern can be applied.

e The solution describes the elements that constitute the design, their responsibilities, rela-
tionships, and collaborations. The solution does not describe a particular implementation;
instead, the pattern provides an abstract description of a design problem and how a gen-

eral arrangement of classes and objects solves it.

e The consequences are the results of applying the pattern. A discussion of the consequences

and trade-offs is essential in understanding the costs and benefits of applying the pattern.

The building blocks of DLab incorporate appropriate design patterns whenever possible.
Most patterns used in DLab can be found in [11] and [25]. By describing the DLab framework
in terms of patterns, we introduce both the design and the rationale behind the design. In
the following sections, we traverse the software organization of DLab, presenting a detailed
description of each component. The class diagrams in this chapter use the Unified Modeling

Language (UML). A legend of this notation can be found in Appendix B.

4.2 Design of the DLab environment

Our goal in designing the DLab environment was to ensure that the separation between
framework and concrete implementation was clearly defined. We define an infrastructure that
enables the environment user to take advantage of third-party libraries with minimal awareness
of library- and architecture-specific requirements. The software organization of DLab can be
viewed as a hierarchical set of components. At the highest level, the principal functionality
of the system is described by a set of abstract interfaces. Specific implementations for these

abstractions provide library and platform-dependent services.
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Figure 4.2: DLab software organization.



Figure 4.2 illustrates the high-level organization of abstract DLab components?. Some (but
not all) concrete implementation classes are also shown. Some links and classes with minor
roles were omitted due to space limitations.

In the remainder of this chapter, we discuss groups of related DLab components, and the
design patterns applied in developing them. Each section begins with an introduction of a
design problem relevant to the software layer being discussed, followed by an overview of the
selected pattern, and concluding with a discussion of how the pattern was applied to solve the

problem.

4.3 Resource management layer

A distributed computing environment such as DLab must operate networking and comput-
ing resources at close to maximum performance. Not only must the environment be resource-
aware, but it must automatically adjust to changing run-time system and application require-
ments. Achieving these goals without compromising portability is a significant challenge for
the designer of the framework.

Most existing distributed resource management systems are intended for use with general,
large-scale applications [13, 21, 41, 50]. Because of their generality, they can rarely utilize
low-level, application-specific information that can potentially make resource allocation more
effective. Furthermore, the majority of existing resource management schemes focus on achiev-
ing the highest throughput possible for a given set of distributed resources. While achieving
good hardware utilization, this approach is not likely to work well in an interactive environment,
in which the most significant measure of good performance is the system’s response time.

We address the issues of estimating resource requirements and allocating resources among
multiple users in an interactive environment, in which in addition to hardware utilization, we
aim to minimize the time during which the user waits for a system response. Our solution is

implemented in the resource management layer of DLab, which consists of the classes associated

2The class names of abstract components are in italics.
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with resource monitoring of the run-time environment and scheduling of user requests. The
resource monitoring portion of the code is perhaps the least portable, and must therefore be
easily extensible in order to incorporate new platforms. Our design takes this into account and
offers a solution allowing the system to be ported fairly easily to different platforms.

The scheduler classes were also designed with extensibility in mind. We wanted to take
advantage of different scheduling algorithms on different platforms, or even while the computa-
tional engine is executing on the same platform. This flexibility was achieved by applying the

Strategy Pattern, which is appropriate for both the resource monitor and scheduler components.

4.3.1 Strategy Pattern

The Strategy Pattern (Figure 4.3) is generally used when different variants of an algorithm
are needed or the low-level details of an algorithm’s implementation should be hidden from
clients. Our scheduling needs correspond to the first type of use, while the resource monitor is
an example of the second type. For scheduling, we need a way to provide several algorithms
that implement the same behavior. For the resource monitoring component, we must provide

architecture-specific implementations for all supported platforms.

Context Strategy
contextlnterface() algorithminterface()
A
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
algorithminterface() agorithminterface() algorithminterface()

Figure 4.3: Structure of participants in the Strategy Pattern.

The application of the Strategy Pattern in DLab is illustrated in Figure 4.4. We applied

the pattern twice: once for the scheduler hierarchy and again for the resource monitor classes.
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Figure 4.4: Application of the Strategy Pattern in DLab.

The following classes participate in our application of the Strategy Pattern.

e Scheduler and ResourceMonitor (Strategy). These abstract classes declare an inter-
face common to all supported algorithms. New algorithms can be incorporated into the
system without modifying the high-level interface. The ResourceManager uses this
interface to access indirectly the appropriate scheduling algorithm or resource monitor

instance.

FIFOScheduler, OptScheduler, O2K_ResMonitor, LINUX_ResMonitor (Con-
creteStrategy). These concrete classes implement the interface defined by the abstract
Strategy classes. In the Scheduler hierarchy, we provide a couple of different scheduling
mechanisms, and more can be added in a straightforward fashion. In the Resource-
Momnitor hierarchy, we provide implementation of the resource monitoring interface for
two platforms: the Origin2000 and an Intel-based Linux cluster of workstations. In order
to port the resource management components to a new platform, only a new concrete

implementation of the Resource Monitor interface must be added.
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e ResourceManager (Context). The ResourceManager maintains a reference to a
Strategy object, and can be configured with a concrete resource monitor or scheduler
instance, e.g., O2K_ResMonitor or FIFOScheduler. The context passes all the data

required by the scheduling algorithm to the chosen concrete implementation.

Instances of other classes in the system interact with the scheduler and resource monitor only
through the ResourceManager. This effectively hides the low-level implementation details of
both the monitor and scheduler, and gives us freedom to choose different concrete implemen-
tations at run-time. For example, clients of the ResourceManager do not need to know at
any given time which scheduling algorithm is being used for scheduling user requests. New al-
gorithms can be added without affecting the way clients interact with the ResourceManager

interface.

4.4 Computational layer

When a user request is received by the computational server, it includes only high-level
information about the operation to be performed: a generic name, e.g., matrix multiplication,
the number of arguments and their unique identifiers, and any data needed by the operation
but not available on the server. There is no information on which particular algorithm must be
invoked for the operation, or how the data must be partitioned and mapped to processors. In
order to fulfill the request, the environment must fill in all the missing information and perform
the correct computation in a manner completely transparent to the user.

To our knowledge, there are no interactive environments that offer a solution to this problem
without requiring input or feedback from the user. While part of the process may be automated,
the user must produce some information that would not be required when performing the same
computation in a sequential environment.

The DLab environment allows the user to supply preferences or feedback pertaining to the
parallel execution of requests, but that information is completely optional. In other words, the

run-time environment automatically handles all details of computing a result in parallel. The
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main goal of our design is to accomplish this without compromising response times, hardware
utilization, or the parallel efficiency of the computation.

The scheduling components’ role is to augment the limited information contained in a user’s
request with algorithm-specific details and resource requirements. In order to provide this
information, the scheduler must know some details about the parallel algorithm that will be
executed. After the resource requirements of the problem have been determined, the scheduler
must initiate the execution of the appropriate algorithm. Which algorithm must be invoked
depends largely on the request and the type of the arguments. Defining a way for the scheduler
to obtain this information without explicitly incorporating it into the scheduling classes is the
main challenge in designing the computational component. From the software design point of
view, it would be infeasible to implement a separate scheduling component for every algorithm
and every data type in the system. To solve this problem, we apply the Command Pattern,
which allows the scheduler to obtain algorithm-specific details using only the user request

information.

4.4.1 Command Pattern

The intent of the Command Pattern is to encapsulate a request as an object, thereby al-
lowing client classes to be parameterized with different requests. This pattern is applicable in
situations in which it is necessary to obtain information about a request without knowing any-
thing about the operation being requested or the receiver of the request. Figure 4.5 illustrates

the structure of the classes participating in the Command Pattern.
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Receiver ConcreteCommand
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Figure 4.5: Structure of participants in Command Pattern.

In DLab, the Scheduler must obtain algorithm-specific information about the user’s request

and cause the appropriate algorithm to be executed. We apply the Command Pattern to allow

this information to propagate from the low-level concrete implementation of algorithms to the

Scheduler.

Scheduler Operation
execute()
. JAN
Matrix
matMul () | |
cholFact() MatMul CholFactor L UFactor
luFact() execute() execute() execute()
|
|

Figure 4.6: Application of the Command Pattern in DLab.

Figure 4.6 illustrates the application of the Command Pattern in the computational layer

of DLab. Only the interface that allows the execution of requests is shown, but the functions

returning other algorithm-specific information are used in a similar fashion.
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e Operation (Command). The responsibility of this class is to declare an interface for
executing an operation. The Scheduler object uses this interface when obtaining infor-

mation about an algorithm or initiating its execution.

e MatMul, CholFactor, LUFactor, etc. (ConcreteCommand). The concrete commands
define the binding between a receiver object (e.g., a matrix type for which this algorithm
is implemented) and an action. In the example of Figure 4.6, the MatMul concrete class
invokes the matMul() method of the appropriate Matriz object (actually, the method
implemented in a concrete subclass of the Matrix class would be invoked, e.g., a Scala-

packMatrix.)

e Scheduler (Invoker). The Invoker participant asks the command, e.g., MatMul, to

carry out the request.

The above design allows new functionality to be added seamlessly without having to change
the scheduling components of the system. For example, when a new matrix type is added, all

of its operations would become automatically accessible to the scheduler.

4.5 Communication layer

One of the principal underlying components of the DLab system is the communication
layer. It supports different types of communication that are dynamically configurable. The
requirements for the communication links between run-time components of the system dif-
fer, depending on the architecture of the server and client platforms. Heterogeneity may be
present between client and computational engine, and also within the computational engine.
There are three main types of communication present in the DLab environment: (1) requests
and data transfers between clients and the computational server, (2) communication between
the resource manager and objects executing user requests, and (3) communication involved in

parallel numerical computations performed by calling third-party libraries.
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Depending on the platforms on which different components of the system are running,
the communication layer must select one of several low-level mechanisms. On a cluster of
workstations, communications might be performed with TCP /IP, while in a parallel computer,
specialized high-performance protocols typically offer higher bandwidth and lower latency.

The communication layer of the DLab environment is different from that of traditional client-
server or parallel applications. Instead of having one predetermined communication mechanism
throughout the life of the application, e.g., MPI, the DLab environment must create and manage
multiple heterogeneous communication channels. Each flow can have different requirements in
terms of reliability, throughput, network quality of service, etc. For example, for efficient
communications on the SGI Origin 2000, the data exchanges between the operation servers
and the scheduler utilize the global shared memory available on that platform. At the same
time, the client must interact with the computational engine over a wide-area network using a
higher-latency distributed-memory mechanism, such as TCP/IP.

Existing approaches to this problem, such as the communication module of the Globus
toolkit [21], provide interfaces that allow the low-level protocol selection process to be exposed
to, and guided by, higher-level tools and applications. However, this approach requires that
either the user or a high-level service supply the information that guides the selection process.
Since the DLab user is generally unaware of the architecture of the distributed environment,
and the system must be capable of performing the same high-level service in different hardware
environments, we cannot employ the same strategy for selecting communication protocols.

The DLab communication layer design addresses this problem by providing interfaces that
allow the selection of low-level protocols that best suit the hardware organization of the environ-
ment. Individual components of the system can be associated with a particular communication
protocol at the time DLab components are compiled for a particular platform. There is no need
to enable dynamic switching between protocols since once the computational engine begins ex-

ecution, its components cannot migrate to different platforms.
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In general, slower, but more reliable communication protocols, e.g., TCP/IP, are used for
loosely-coupled components of the run-time system. Within the computational engine, where
communication speed is crucial to performance, more efficient communications mechanisms are
applied, e.g., vendor implementations of MPI. The difference in communication requirements is
due not only to the physical proximity of the system components, but also on their function. The
communication link between client and server is used mainly for transmitting short requests and
occasionally larger amounts of data. The server itself executes high-level numerical algorithms
that are characterized by complex communication patterns, and whose performance depends
on the underlying communication mechanism.

The main challenge in designing the communication layer is providing a uniform interface to
various communication protocols and mechanisms. Other components of the system can then
utilize the high-level interface to perform communications using the protocol best suited to the
current hardware configuration. After exploring various options, we found that the Acceptor-
Connector Pattern is appropriate for defining the communication abstractions required by DLab

components.

4.5.1 Acceptor-Connector Pattern

The DLab environment involves a number of clients connecting to and utilizing the compu-
tational resources of a parallel server. After the connection is established, a client communicates
with the server using some communication protocol, e.g., TCP/IP. Within the server, multi-
ple threads of control communicate using a possibly different communication protocol, e.g.,
MPI. Different protocols provide different mechanisms for establishing a connection between
service endpoints. However, once communication has been established, the basic nature of
data exchange between client and server, as well as within the server, is the same. In order
to provide a uniform interface for communication primitives for arbitrary low-level protocols,
we must decouple connection establishment from communication associated with performing

parallel numerical computations.
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The Acceptor-Connector Pattern (Figure 4.7) decouples the active and passive connection
establishment and service initialization from the processing the two endpoints of a service
perform once they are connected and initialized [59]. Three components are involved in this
decoupling: acceptors, connectors, and service handlers. A connector actively establishes a
connection with a remote acceptor component and initializes a services handler. An accep-
tor passively waits for connection requests from remote connectors. Upon the arrival of such
a request, the acceptor initializes a service handler to process further requests from the con-
nector. The service handlers perform application-specific processing and communicate via the

connection established by the connector and acceptor.

Dispatcher
connection connection
complete arrived
Connector ServiceHandler Acceptor
connect(sh, addr) activatesp open() 4 activates accept()
complete() open()
ConcreteConnector ConcreteServiceHandler Concrete Acceptor

Figure 4.7: Structure of participants in the Acceptor-Connector Pattern.

In DLab, the client implements the connector component, the Dispatcher implements
the acceptor, and the Operation hierarchy implements the service handling capabilities. We
extend the Acceptor-Connector pattern by allowing the service handler itself to be distributed.

The DLab application of the pattern is illustrated in Figure 4.8.
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Figure 4.8: Class diagram of the DLab communication layer.

We modify the pattern slightly by combining the roles of the Acceptor and Dispatcher,
since it did not seem necessary to support two separate objects for connection initiation and
request handling. However, we preserve the separation between connection establishment and
communication within the Operation hierarchy. The following classes participate in the DLab

implementation of the Acceptor-Connector Pattern.

e Client (Connector). The Client provides the interface through which the user interacts
with the environment. In the present implementation, the Client is part of the extended

MATLARB interpreter. The Client actively establishes a connection with the Dispatcher.

e Dispatcher (Acceptor). The Dispatcher class is a factory® that implements the strategy
for passively establishing a connection and initializing its associated service handler, an
instance from the Operation hierarchy. In addition, the Dispatcher creates new data-
mode endpoints used by the Operation to transmit data between connected peers. There
is only one instance of the Dispatcher class in the run-time DLab environment. The

Dispatcher demultiplexes connection requests, registering all clients with the Scheduler.

3The Factory Pattern is discussed in Section 4.5.2.
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e Operation (Service handler). All user requests are forwarded to the Scheduler and
are eventually handled through the Operation class hierarchy. The Operation class
provides the interface for the computational services provided by the DLab environment.
Its children provide concrete implementations of library-specific services. For example,
the MatMul class implements the Operation interface by invoking an appropriate third-

party library routine according to the data types of the arguments.

4.5.2 Factory Method Pattern

When performing computations for different users in a time-shared environment, the com-
putational engine must be able to keep parallel operations from interfering with each other.
To enable this, communication libraries, such as MPI and the BLACS, provide the notion of a
context. A context defines the communication space for a problem. A physical processor can be
a part of multiple contexts. Each user request received by the computational engine is enclosed
in a communication context before the associated operation is executed.

We define a uniform interface for context creation and use, so that contexts can be allocated
by high-level components independently of the low-level communication library. According to
the underlying communication protocol, the appropriate context is created when a request is
submitted for execution. The Factory Pattern (see Figure 4.9) provides the method for dynamic
creation of contexts.

The classes participating in our application of the Factory Method Pattern are illustrated
in Figure 4.10. Context creation is propagated to the low-level concrete implementations of
different types of contexts, e.g., MPI communicators or BLACS contexts. The appropriate
context is created at the time the request is submitted for execution, depending on the type of
the operation arguments. For example, ScaLAPACK operations require that a BLACS context

be defined before the computation can proceed.
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Figure 4.9: Structure of participants in the Factory Method Pattern.
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Figure 4.10: Application of the Factory Method Pattern in DLab.

The following classes participate in our application of the Factory Method Pattern.

e Communicator (Creator). An instance of this class is associated with any object that

must perform some type of communication. In DLab, data and algorithm objects al-
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ways contain a communicator reference. The context creation function is part of the

Communicator interface and must be defined by all its concrete subclasses.

¢ BlacsCommunicator, MpiCommunicator, etc. (ConcreteCreator). These concrete
classes implement the Communicator interface, and specifically the context creation
function. For example, operations using the BLACS communication library contain a
reference to an instance of the BlacsCommunicator class, which can produce a BLACS

communicator required by ScaLAPACK driver routines.

e CommunicatorContext (Product). This abstract class defines the context interface.
Classes outside the context hierarchy use this interface to create and operate with concrete

contexts.

¢ BlacsContext, MpiContext (ConcreteProduct). These concrete classes implement the
interface defined by Communicator Context. They produce the appropriate context at
run-time, e.g., a BLACS context for ScaLAPACK operations, or an MPI communicator

for PETSc [3, 4, 5] operations.

Adding new types of communicators and contexts to the system can be accomplished by
making new concrete subclasses of Communicator and CommunicatorContext and defin-
ing the createContext() function to return the appropriate context. All other functions in the
abstract interface must also be implemented. No changes to other components of the framework

are required.

4.6 Data representation layer

Third-party numerical libraries have different requirements for how data should be stored
and partitioned. In order to support more than one parallel numerical package, the high-level

abstractions must not be aware of the concrete data representation.
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Figure 4.11: Class diagram of the DLab data hierarchy.

The data representation layer of the DLab environment defines an abstract interface for
accessing distributed data. This interface isolates library- and hardware-specific details from
the other DLab components. In addition to hiding the low-level data storage details, the DLab

data hierarchy incorporates the interface to third-party algorithms, e.g., ScaLAPACK driver

routines.

Our decision to associate data representation and algorithms is based on the observation

that existing numerical packages normally cannot work with the data representations defined by
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other packages. For example, PETSc routines use one-dimensional dense matrix distributions,
while ScaLAPACK routines use two-dimensional block-cyclic distribution for dense matrices.
By making the algorithm a property of the data type, we ensure that the correct algorithm is
used for that particular type. This also allows us to define methods that handle the conversion
between different representations in order to be able to use algorithms from different libraries.
For example, to enable a matrix stored in ScaLAPACK format to be multiplied with a matrix
stored in PETSc format, we simply need to add an implementation of the multiply () function
in ScalapackMatriz that accepts a PETSc matrix as an argument. The corresponding imple-
mentation of multiply () in the PETSc matrix class can utilize double dispatching by invoking
ScalapackMatriz implementation, thus avoiding code replication.

Figure 4.11 illustrates the organization of classes used to handle distributed matrices in
the DLab environment. The principal abstract class is the DlabMatrix class. It provides
the interface used by components outside of the data hierarchy. For each third-party library
containing matrix operations in the environment, one or more new concrete subclasses of the
Matriz class must be created.

References to all data objects in the environment are maintained in a table in the Envi-
ronment class. This table is updated whenever a new data object is created. The table is also
used to ensure data consistency during lazy evaluation. An operation is not allowed to proceed

if any of its operands is currently involved in a different operation.

4.7 Performance considerations

In addition to extensibility and portability, the software design of our framework aims at
achieving good parallel performance when executing client requests. In Chapter 3, we describe
our approach to scheduling user requests, which includes estimating the optimal resources re-
quired by a given computation. When the analytical performance model of a given algorithm
is known, we can allocate resources according to the type of computation, which usually re-

sults in good parallel efficiency. Even when analytical information is lacking, we attempt to
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utilize recommendations given by the library designers, e.g., the rules-of-thumb suggested by
ScaLAPACK authors.

Another approach for achieving good performance is the combining of certain requests into
operations for which optimized implementations exist. For example, consider the MATLAB
code X = a * Y + Z; where a is a scalar, and X, Y, and Z are vectors. Assuming Y and Z are
large enough, the above line entered by the user would result in the generation of two requests:
a scalar-vector multiply and a vector sum. If these requests were to be executed independently
by the computational engine, two parallel library routines must be invoked, and a temporary
vector would be created. We can produce X more efficiently by invoking a parallel AXPY
routine, which would compute the result directly, without using temporary storage. In order to
be able to use this more efficient routine, we attempt to pair add and multiply requests. This
is accomplished by delaying a multiply or add request until either the corresponding add or
multiply arrives, or a predefined wait period expires. Since it is very likely that the multiply and
add are very close together in the user input, the delay of the first request would be insignificant.

Another technique that allows us to achieve better response times in the case when the client
and computational engine architectures use different data representations is performing all nec-
essary data conversion in parallel after data have been received or before results are transmitted
back to the client. Most existing packages handle heterogeneity by converting data to the net-
work’s format (if needed). In other words, the machine whose data representation differs from
that of the network is the one always performing the conversion. Using this approach, if the
client is running on a little-endian machine, and the server is a big-endian parallel architecture,
the client would always be responsible for converting the data, while the computational engine
would not need to do any conversion for that particular client. This would cause the client to
block while the data conversion lasts, which severely limits interactivity. To avoid this, DLab’s
design assumes that data conversion would always be done by the computational engine, taking

advantage of parallelism and potentially faster processors.
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4.8 Extensibility and portability

In the design of DLab, the issues of portability and extensibility are closely linked. The
use of standard C and C++, as well as portable libraries, such as MPI, the BLACS, and
ScalLAPACK has allowed us to develop a highly portable system. DLab has been ported to
and tested on the SGI Origin2000 and an Intel Pentium-based Linux cluster of dual-processor
workstations.

The software is structured in a way that allows effortless addition of new application-specific
and platform-specific features. The preceding discussion of the components of the framework
includes the steps needed to extend the system with new functionality or to port it to new

architectures.
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CHAPTER 5

Performance Evaluation

In this chapter we demonstrate the interactive DLab interface and present some performance
results obtained on two parallel platforms: an SGI Origin2000 at the National Center for
Supercomputing Applications and a cluster of Intel workstations running Linux at the Computer

Science Department of the University of Illinois.

5.1 Platform description

The hardware description of the Origin2000 is based on the white paper by James Laudon
and Daniel Lenoski [39]. The Origin2000 is a cache-coherent, non-uniform memory access
supercomputer based on the MIPS R10000 processor. The basic building block of the system
is the dual-processor node. Each node is not an SMP cluster; the two processors operate
separately and are multiplexed over the single physical bus. The nodes are connected together
via a scalable interconnection network. The topology used is a bristled fat hypercube. The
“bristled” characteristic signifies that two nodes are connected to a single router (see Figure 5.1).
The fat hypercube interconnect is used for systems containing beyond 32 nodes. Beyond 64
nodes, a hierarchical fat hypercube is employed. In all experiments the time-shared interactive
partition of the Origin2000 array was used. It consists of 56 195MHz R10000 processors with

a total of 14GB of memory.
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Figure 5.1: A 32-processor bristled hypercube.

The Intel-based Linux cluster used for our experiments consists of a 4-processor Pentium-
IIT server and 50 dual-processor SMP nodes interconnected via 100Mbit full-duplex switched
Ethernet. The nodes include 400MHz and 450MHz Pentium II processors, and 550MHz Pentium
IIT processors. Each node has 1GB of memory. The communication protocol used in the Intel

cluster is TCP/IP.

5.2 A simple computation

In this section, we show some experimental results obtained by running the DLab proto-
type on a Sun Ultra-5 client and SGI Origin2000 server. The following experiment shows some

preliminary results.
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Matrix Multiplication LU Factorization

A = rand( 1000, 1000 );
B = rand( 1000, 1000 ); | A = rand( 1000, 1000 );
C = A * B; [L,U] = 1u( A );

save(’C.dat’, ’C’);

Table 5.1: Simple DLab examples.

Table 5.1 shows the high-level code that the user enters interactively at the client worksta-
tion. The actual computation is done remotely by a DLab server on eight processors of the
remote computational engine. The necessary data transmission, problem partitioning, schedul-

ing, and parallel execution are performed transparently to the user.

Computation Sequential time | DLab response time

with MATLAB (with lazy eval.)

Product without save 66.06 0.73
Product with save 74.14 11.03
LU Factorization 43.56 0.65

Table 5.2: Response times in seconds for examples in Table 5.1 using the Origin2000 as the

remote computational engine.

The response times shown in Table 5.2 are measured in seconds from the time the user
submits the request until the input prompt returns, and the user regains control of the environ-
ment. In the matrix multiplication timing results, the first table row is for the code segment
excluding the save statement, while the second row is for the entire code segment. When lazy
evaluation is used, the parallel server sends an acknowledgment back to the client as soon as
a request arrives, i.e., before the computation of the result begins. Thus, the response time
reflects the time it takes to transmit a short message (less than 100 bytes) from the server to

the client. In the code segment without save, the result is computed and stored at the remote
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server. When the save operation is encountered, the result is computed as soon as possible
on the remote server, and is then transmitted back to the client, which writes the data to
the specified file. The results obtained using the Intel cluster as the computational engine are

similar since the network speeds between the client and the server are comparable.

Computation

Sequential time

with MATLAB

Origin2000

sequential MATLAB

Origin2000

(8 processors)

Intel cluster

(8 processors)

Matrix product

LU Factorization

66.06

43.56

6.34

7.66

1.23

1.69

5.06

4.20

Table 5.3: Wall-clock execution times in seconds for examples in Table 5.1.

Table 5.3 contains the wall-clock execution times for the respective computations. As antic-
ipated, utilizing high-performance platforms results in drastic reduction of wall-clock execution

time. The speedup observed is due to several factors, the most important of which we list here.

e Faster processor speed. This is only a factor in the case of the Intel cluster. Origin2000
processors are slower than Sun processor used in the sequential experiments, but they

have more memory.

e Increased memory. In addition more processors available on the parallel computational
servers, the amount of other types of resources also increases. The uniprocessor Sun
workstation we used for the sequential experiments has 128MB of memory, while the

memory available to any given processor on the parallel platforms used is measured in

gigabytes.

e Utilization of vendor-optimized libraries. In our experiments on the Origin2000, we used
the vendor implementation of MPI, which takes advantage of the distributed shared mem-
ory supported on this architecture. Furthermore, certain components of ScaLAPACK

utilize vendor-optimized implementations of principal numerical routines.
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As can be seen from these results, the DLab remote server enables the development of
algorithms that work efficiently with relatively large matrices, but with the convenience for the
user of a familiar, high-level interactive interface. These results may be slightly better than
the average case scenario because of the way the matrices are generated. Random matrices
are generated within the DLab server, so there is no initial data transfer between the client
and the server. The effect of I/O and data transfer between server and client are reflected in
the example containing the save request. Clearly, the main bottlenecks in this case are the
time it takes to transfer the result back to the client and the file I/O. In most cases, however,
the intermediate results of a distributed computation are likely to be used in a subsequent

operation; thus, there is rarely need to store large amounts of data locally.
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CHAPTER 6

Future Work

The ideas described in this chapter present some of the design or implementation features
that have not been incorporated fully into the DLab environment at the time of this writing.
Some of these ideas have been explored in part, but were not deemed essential for the completion

of this thesis.

6.1 Client implementation

Extending Rlab to handle remote requests was a viable choice in the beginning of the devel-
opment of the DLab environment. Even though adding new functionality to Rlab is not very
complicated to a programmer familiar with the code structure of the interpreter, it is cumber-
some for someone who does not wish to get acquainted with the design of Rlab. Extending
MATLAB with a client-server interface was considerably easier, mainly due to MATLARB’s
object-oriented features and our previous experience. However, even the MATLAB extensions
may need modifications as the MATLAB object-oriented model changes with future versions. A
possibly better way of providing good extensibility is to design a custom object-oriented inter-
preter, whose client interface mirrors that of the DLab server components. A custom interpreter
would also insure independence of changes in third-party interactive environments and would

make client maintenance easier. Since the design and implementation of an object-oriented
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interpreter is peripheral to the main goal of this research, it was not deemed essential for this

thesis.

6.2 Dynamic process management

At present, the computational engine component of DLab relies on a fast and portable
communication library for servicing user requests. Even though both PVM and MPI can
be used as the underlying high-performance communication mechanism, the portability and
performance of MPI make it the preferred choice. Many current implementations of MPI do
not allow dynamic process creation and deletion during the life of an application. That is to
say, the number of processors available to the computational engine are specified at the time
the dispatcher daemon is started and cannot be changed throughout its lifetime. However, the
MPI-2 standard [46] includes a specification of a dynamic process management mechanism, and
it is probable that in the near future most MPI implementations will support it. At present,
the LAM implementation of MPI [38] is the only portable MPI implementation that supports
dynamic process management as defined by the MPI-2 standard, but it suffers from limitations
that restrict our ability to utilize it in our design. The main problem is the inability to control
where new processes are spawned, leading to severe load imbalance when multiple user requests
are being serviced. If a better implementation of MPI dynamic process management becomes
available, the DLab environment can take advantage of it to provide more flexible resource
utilization. At present, the parallel resources available to clients cannot be changed once the

DLab dispatcher is started.

6.3 Resource monitor and scheduler extensions

At present, the DLab environment monitors CPU load and network bandwidth only. The
resource monitor can be extended to collect other types of information about the current state

of the system. For example, the amount of available physical memory can be utilized by the
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scheduler in determining the cluster of processors best suited for a given problem. In order
to be able to use this type of information, algorithm specifications should include the memory

complexity of the problem, in addition to computational and communication estimates.

6.4 Security issues

In the current implementation of DLab, security issues were not considered in depth. This
situation must be remedied if DLab is to be used for accessing high-performance architectures
with strict access and billing policies. In order to enable the sharing of resources, there must be a
mechanism for authentication of the identity of the user and the nature of the resource requested.
Institutions and organization support different authentication mechanisms, e.g., requiring that
a user have an account on each of the distributed resources. A shared environment must
accomodate differences in the underlying authentication mechanisms without requiring changes
to local policies. The designers of the Globus environment [21, 22] propose an authentication
and authorization infrastructure that meets these requirements [17]. This infrastructure is based
on the Grid Security Infrastructure (GSI) [23] developed within the Globus research project.
By extending the DLab environment with an implementation of this type of security system,

we can enable sharing of resources owned by multiple instituions.

6.5 Web client interface

Once a good authentication and authorization mechanism is in place, providing a graph-
ical web interface for the DLab client would greatly enhance its availability. This can be
accomplished in a straightforward fashion using the MATLAB web server, which allows the
deployment of MATLAB-based applications using standard web technology. If a new stand-
alone Java-implemented interpreter is developed, a web interface for the DLab client can be

integrated into the system naturally.
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CHAPTER 7

Conclusions

Traditional parallel numerical application development is complex, error-prone, and time-
consuming. The software developer must often make choices involving tradeoffs between per-
formance and ease-of-use or portability. While high-performance distributed-memory platforms
become increasingly available, portable, extensible software for developing scientific applications
for these platforms remains scarce.

In this thesis, we address several issues that can lead to improvement in parallel numerical
algorithms and applications development. In Chapter 2, we introduced the DLab environment
for parallel numerical computations, which combines the ease-of-use of a high-level interac-
tive interface with the computational power of a high-performance distributed system. One
of the features of this environment is its MATLAB-like interface, which hides the complexity
traditionally associated with parallel application development. In Chapter 3 we described the
mechanisms used to ensure that parallel resources are effectively utilized in the absence of user
feedback. We discussed the resource monitoring and scheduling approach used to determine
automatically the requirements of a given parallel computation and to assign resources accord-
ingly. In Chapter 4 we presented the object-oriented framework used as a basis for the DLab
environment. Unlike most existing numerical software, our framework provides portability, ex-
tensibility, and interoperability between third-party packages without sacrificing performance.

We demonstrated the applicability of the framework and the performance achieved in Chap-
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ter 5. Finally, we summarized opportunities for further work in improving and extending the
DLab environment and its design in Chapter 6.

We have defined an infrastructure for bringing interactivity and simplicity to high-performance
numerical computing. By providing mechanisms for automatic resource allocation, we have en-
abled the transparent use of remote parallel resources. We have also introduced a software
design that ensures portability and allows straightforward extension of our implementation

without sacrificing performance.
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APPENDIX A

Related Work

Over the past decade, there have been numerous efforts to enhance MATLAB or MATLAB-
like environments with parallelism. Significant work has been done in the area of both inter-
preters and parallel compilers. The appearance of MATLAB compilers [44, 45] that translate
MATLAB scripts into sequential C or C++ code prompted research on making parallelizing
compilers that utilize known optimization techniques to detect and take advantage of paral-
lelism.

The earliest attempts date back to the mid-1980s, according to Cleve Moler’s essay “Why
there isn’t a parallel MATLAB,” published in the MathWorks Newsletter in 1995 [47]. The
rapid development of distributed computing has encouraged active research in this area. We
are aware of several projects that have been undertaken elsewhere that share some of the goals
and capabilities of DLab. In the remainder of this appendix, they are ordered according to the
approach taken.

Possibly the earliest related project is the CONLAB (CONcurrent LABoratory) system
of Kagstrom and others at the University of Umed, Sweden [16, 34]. CONLAB is not directly
based on MATLARB; it consists of a MATLAB-like notation that extends the MATLAB language
with functions and structures for explicit parallelism. The CONLAB source code is compiled
into C code with calls to the PICL message-passing library. Individual processor computations

are performed using LAPACK. This approach suffers from lack of interactivity, serialization
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imposed by the sequential implementation of algorithms, and potentially poor scalability of the
resulting parallel code.

Another example of a compiler-oriented approach is the FALCON (FAst Array Language
COmputatioN) project developed at the University of Illinois at Urbana-Champaign [43, 55, 56].
The FALCON environment combines compiler techniques and algorithm design knowledge to
produce annotated intermediate code, which can be parallelized by a Fortran compiler such as
Polaris [9], parallel target code in Fortran90 or pC++. This approach suffers from the lack
of interactivity inherent to parallelizing compilers. The FALCON environment alleviates this
problem somewhat by providing tools for run-time monitoring and steering, but the application
development process is essentially unchanged from the traditional one.

Otter is a multi-pass compiler that translates MATLAB scripts into SPMD-style C pro-
grams augmented with calls to a parallel run-time library and some other high-level numerical
libraries [42, 53]. Otter was developed recently at Oregon State University by Michael Quinn
and others. The Otter user writes strictly sequential MATLAB scripts, which are processed by
a compiler, and whenever possible, linked to high-level functions in existing parallel numerical
libraries. While this mode of application design aims to achieve good parallel efficiency of the
finished application, it does not change the traditional development cycle of edit, compile, run,
debug. Otter is a parallelizing compiler for a very high-level language, providing transparent
parallelism at the cost of true interactivity.

The Cornell MultiMATLAB project [66] adds some message-passing functionality to MAT-
LAB (Send, Recv, Bcast, Min, Sum), allowing the user operating within one MATLAB session
to start MATLAB processes on other machines and then write high-level message-passing code
taking advantage of multiple processors. While most of the simplicity of sequential MATLAB
syntax is retained, the introduction of low-level message-passing primitives imposes difficul-
ties associated with distributed memory programming. The MultiMATLAB user is responsible

for implementing message-passing numerical algorithms, whereas the DLab user operates on a
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higher level, taking advantage of optimized parallel numerical software and DLab’s autonomous
data-distribution and scheduling mechanisms.

Matpar [48] is an extension to MATLAB that allows the user to utilize numerical libraries
on a remote parallel server. The user explicitly initializes the parallel server by invoking a
special external routine. During the interactive session, the user may choose to execute cer-
tain computations in parallel. This is accomplished by using functions with syntax similar to
their sequential counterparts (e.g., p_lu, p_qr). The computations specified in this manner are
executed on the remote server, and all data transfer and distribution is handled transparently
from the user. Unlike DLab, Matpar always requires the user to make decisions on when to
execute an operation in parallel. Furthermore, since each function is handled separately, there
is a potential for unnecessary data transfer between the client and the server.

Scilab [33] is a MATLAB-like programming environment that combines the ease-of-use of a
high-level interactive interface with the performance of optimized numerical routines (custom-
developed). Scilab also allows the user to interface with Fortran and C libraries easily via
dynamic linking. Scilab is strictly sequential, but there are plans for extending it to include
parallelism. The goals of the Scilab// environment are to provide the same high-level inter-
active interface as Scilab, while transparently utilizing parallel numerical libraries, such as
ScaLAPACK. At present, Scilab// support consists only of PVM extensions to the language,
allowing the user to write explicitly parallel Scilab scripts.

MITMatlab [32] is an extension to the MATLAB programming environment, providing
transparent access to a stand-alone parallel linear algebra server, the PPServer [31]. MITMatlab
uses MATLAB classes and operator overloading to perform computations in parallel using the
same syntax as their sequential counterparts. Some of the main differences between MITMatlab
and DLab include the need to specify data layout explicitly when creating distributed objects,
the limited data mapping possibilities (only row or column distributions), and the restriction

of all computation to the parallel server, regardless of problem size.
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The NetSolve [12] system operates over a set of loosely connected machines, coordinating
a set of independent subsystems in different locations, possibly providing different services. A
NetSolve client has two main alternatives for problem specification: (1) an interactive interface,
which retrieves a formal problem description from a previously created configuration file, or (2)
non-interactive C and Fortran interfaces. The philosophy of NetSolve differs from DLab in that
the decision on when to execute something remotely is left entirely to the programmer, whereas
in DLab, the decision to execute remotely is transparent to the programmer!. After selecting a
particular computational resource, NetSolve users are fully responsible for invoking it correctly.
The user must know the interface details of the remote package since NetSolve is responsible
only for making software available, not making it easy to use. In other words, NetSolve focuses
on software availability, while DLab provides an easy-to-use interface to a more restricted set
of software resources.

TRAPPER [26] is a graphical programming environment for the development of parallel
software. TRAPPER contains components for the parallel software design, hardware config-
uration, process mapping, process monitoring, graphical software debugging and performance
monitoring. TRAPPER provides a high-level graphical user interface, while supporting the
traditional application development cycle, which limits interactivity. The user is responsible
for coordinating the interaction between different processes and the mapping of computations
and data onto the parallel platform. This task is made a little easier by using visual tools for
handling communication between processes.

The Legion project at the University of Virginia [18, 28] aims to provide an architecture for
designing and building system services that present the illusion of a single virtual machine. This
virtual machine provides secure shared object and shared name spaces, application adjustable
fault-tolerance, improved response time, and good throughput. Legion tackles problems not
solved by existing workstation-based parallel processing tools, enabling fault-tolerance, wide

area, parallel processing, interoperability, heterogeneity, a single file name space, protection,

!That is not to say that the programmer has absolutely no control over this; the parameters used in making
that decision can be modified by the user, if desired.
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security, efficient scheduling, and comprehensive resource management. Legion is essentially an
operating system for general purpose wide-area computing that does not provide any specific
numerical capabilities, whereas DLab is a more specialized numerical problem-solving environ-

ment.
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APPENDIX B

Notation

This Appendix contains a summary of the graphical symbols used in class diagrams in
this thesis. The notation adheres closely to the Unified Modeling Language standard [10, 57].
Table B.1 includes explanation of the class diagram notation used in the thesis. Class diagrams
illustrate the static structure of a software model, in particual entities such as classes and types,
their internal structure, and their relationship to other entities in the model. Class diagrams

do not contain temporal information, although they may contain references to things related

to temporal behavior, e.g., instantiation.

attribute : data_type
attribute : data_type = init_value

Notation M eaning
Represents a class, showing attributes and
ClassName . .
member functions. The types of attributes
attribute and return values or arguments of functions

may be omitted.

operation
operation(arg_list) : result type

Class Name

Represents a class without showing any
members.

Table B.1: Notation.
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Table B.1: (continued).

Notation M eaning
Represents an abstract class showing
Class Name member functions. Functions are shown as
. aname and optional argument list and
operation

operation(arg_list) : result type

return type. The type of the argument

or the return type may be suppressed.
Abstract class names and virtual function
names are shown in italics.

Superclass

Abstract Class

V\operati on

Subclass

Subclass2

operation

Represents generalization/specialization.
Abstract Classis a generalization of
Subclass2. Superclassisageneralization
of Subclass. Subclass? is a specialization
of Superclass and Abstract Class, and
Subclassis a specialization of Superclass.

Whole Class

0.1

0.*

0.*

Partl Class

Part2 Class

Represents aggregation, navigability, and
multiplicity. While Classis an aggregation
of zero or more Partl Class objects. Partl
Classis not an aggregation of Whole Class
objects (unidirectional navigability).

Whole Classis an aggregation of zero or
more Part2 Class objects, and Part2 Class is
an aggregation of zero or one Whole Class
objects (composite aggregation,
bidirectional navigability).

Association Name

Represents arbitrary associations between

Cl a$1_r_ol_e_1 ________ role2 Clas?]| | asses giving optional role names,
: <instantiates>> Represents instantiation. Class Instantiator
————————— = . . .
I nstantiator Instantee instantiates objects of class Instantee.

Class

_1 Note text
attributes -7

operations™”

Represents arbitrary notes on an item. Note
text may include clarification, portions of
pseudo code, or the actual code of agiven
item.
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